فیلترها/جستجو در نتایج    

فیلترها

سال

بانک‌ها




گروه تخصصی











متن کامل


اطلاعات دوره: 
  • سال: 

    2013
  • دوره: 

    44
تعامل: 
  • بازدید: 

    184
  • دانلود: 

    0
چکیده: 

LET K BE A SET OF K POSITIVE INTEGERS. A BICLIQUE COVER OF TYPE K OF A graph G IS A COLLECTION OF complete BIPARTITE SUB-graphS OF G SUCH THAT FOR EVERY EDGE E OF G, THE NUMBER OF BICLIQUES NEED TO COVERE IS A MEMBER OF K. LET N (K; D) BE THE MAXIMUM NUMBER OF VERTICES OF A complete graph THAT ADMITS A BICLIQUE COVER OF TYPE K AND SIZE D. IN THIS TALK, WE OBTAIN AN UPPER BOUND FOR N(K,D). ALSO, WE SHOW THAT THE UPPER BOUND CAN BE IMPROVED IN SOME SPECIAL CASES.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 184

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
اطلاعات دوره: 
  • سال: 

    1390
  • دوره: 

    1
  • شماره: 

    1
  • صفحات: 

    31-34
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    1110
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

در این مقاله، عدد رنگی ستاره ای گراف مرکزی از گراف دو بخشی کامل و گراف تاجی گراف کامل با مسیر و دور را به دست می آوریم.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 1110

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسنده: 

Khalashi Ghezelahmad Somayeh

اطلاعات دوره: 
  • سال: 

    2012
  • دوره: 

    43
تعامل: 
  • بازدید: 

    154
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

LET R BE A RING WITH UNITY AND M BE A UNITARY LEFT R-MODULE. THE INTERSECTION graph OF AN R-MODULEM, DENOTED BY G(M), IS DEFINED TO BE A graph WHOSE VERTICES ARE IN ONE TO ONE CORRESPONDENCE WITH ALL NON-TRIVIAL SUB MODULES OF M AND TWO DISTINCT VERTICES ARE ADJACENT IF AND ONLY IF THE CORRESPONDING SUB MODULES OFM HAVE NON-ZERO INTERSECTION. IN THIS TALK, WE STUDY ARTINAN MODULES, NOETHERIAN MODULES AND INJECTIVE MODULES, WHOSE INTERSECTION graphS ARE complete. IN ADDITION, FOR A NOETHERIAN R-MODULE M, WITH complete INTERSECTION graph, WE GIVE A CONDITION UNDER WHICH M IS ARTINIAN.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 154

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
نویسنده: 

MOUSAVI FATEMEH SADAT

اطلاعات دوره: 
  • سال: 

    2013
  • دوره: 

    44
تعامل: 
  • بازدید: 

    112
  • دانلود: 

    0
چکیده: 

IN THIS TALK, WE FIND THE INCIDENCE CHROMATIC NUMBER OF CARTESIAN PRODUCT OF complete graph WITH PATH AND CYCLE AND CORONA OF complete graph WITH PATH AND CYCLE.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 112

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
نویسندگان: 

ABACHI NAZI | SAHEBI SHERVIN

اطلاعات دوره: 
  • سال: 

    2019
  • دوره: 

    6
  • شماره: 

    2
  • صفحات: 

    1-7
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    187
  • دانلود: 

    0
چکیده: 

Let A be a commutative ring with nonzero identity, and 1  n < 1be an integer, and R = A  A      A (n times). The total dot product graph of R is the (undirected) graph TD(R) with vertices R  = R n f(0; 0; : : :; 0)g, and two distinct vertices x and y are adjacent if and only if x  y = 0 2 A (where x  y denote the normal dot product of x and y). Let Z(R) denote the set of all zero-divisors of R. Then the zero-divisor dot product graph of R is the induced subgraph ZD(R) of TD(R) with vertices Z(R)  = Z(R) n f(0; 0; : : :; 0)g. It follows that if 􀀀 (A) is not perfect, then ZD(R) (and hence TD(R)) is not perfect. In this paper we investigate perfectness of the graphs TD(R) and ZD(R).

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 187

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

SAFAEEYAN SAEED

اطلاعات دوره: 
  • سال: 

    2018
  • دوره: 

    7
  • شماره: 

    1
  • صفحات: 

    1-12
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    437
  • دانلود: 

    0
چکیده: 

Let R be a commutative ring and M an R -module. In this article, we introduce a new gen-eralization of the annihilating-ideal graph of commutative rings to modules. The annihilating sub module graph of M, denoted by G (M), is an undirected graph with vertex set A * (M) and two distinct elements Nand K of A * (M) are adjacent if N * K=0. In this paper we show that G (M) is a connected graph, diam (G (M)) £ 3, and gr (G (M)) £ 4 if G (M) contains a cycle. Moreover, G (M) is an empty graph if and only if ann (M) is a prime ideal of R and A * (M) ¹ S (M) / {0} if and only if M is a uniform R-module, ann (M) is a semi-prime ideal of R and A * (M) ¹ S (M) / {0}. Furthermore, R is a eld if and only if G (M) is a complete graph, for every M Î R - Mod. If R is a domain, for every divisible module M Î R-Mod, G (M) is a complete graph with A * (M) =S (M) / {0}. Among other things, the properties of a reduced R -module M are investigated when G (M) is a bipartite graph.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 437

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
نویسنده: 

EBRAHIMI M. | IRANMANESH A.

اطلاعات دوره: 
  • سال: 

    2015
  • دوره: 

    2
تعامل: 
  • بازدید: 

    228
  • دانلود: 

    0
چکیده: 

IN THIS PAPER, WE STUDY THE CHARACTER graph OF A FINITE GROUP. WE OBTAIN SOME CLASSES OF FINITE GROUPS WHICH THEIR CHARACTER graphS ARE complete.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 228

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
نویسنده: 

EBRAHIMI MAHDI | IRANMANESH ALI

اطلاعات دوره: 
  • سال: 

    2015
  • دوره: 

    46
تعامل: 
  • بازدید: 

    167
  • دانلود: 

    0
چکیده: 

LET G BE A FINITE SOLVABLE GROUP. IN THIS PAPER WE CONSIDER THE CHARACTER graph OF GAND STUDY SOME PARAMETERS OF THIS graph. AT FIRST, WE ANSWER THIS QUESTION THAT WHEN IS THIS graph HAMILTONIAN? THEN WE OBTAIN CONDITIONS WHICH IT IS A complete graph. FINALLY, WE STUDY THE COLORING OF THIS graph.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 167

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
نویسندگان: 

Dalvandi s. | HEYDARI F. | MAGHASEDI M.

اطلاعات دوره: 
  • سال: 

    2021
  • دوره: 

    15
  • شماره: 

    1
  • صفحات: 

    127-136
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    53
  • دانلود: 

    0
چکیده: 

Please click on PDF to view the abstract

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 53

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

Ponraj R. | Jeya R.

اطلاعات دوره: 
  • سال: 

    2025
  • دوره: 

    57
  • شماره: 

    1
  • صفحات: 

    30-40
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    1
  • دانلود: 

    0
چکیده: 

Let $G$ be a $(p,q)$ graph. Let $V$ be an inner product space with basis $S$. We denote the inner product of the vectors $\omega_{1}$ and $\omega_{2}$ by $<\omega_{1},\omega_{2}>$. Let $\chi: V(G) \rightarrow S$ be a function. For edge $uv$ assign the label $<\chi(u),\chi(v)>$. Then $\chi$ is called a vector basis $S$-cordial labeling of $G$ if $|\chi_{\omega_{1}}-\chi_{\omega_{2}}|\leq 1$ and $|\delta_i-\delta_j |\leq 1$ where $\chi_{\omega_{i}}$ denotes the number of vertices labeled with the vector $\omega_{i}$ and $\delta_i$ denotes the number of edges labeled with the scalar $i$. A graph which admits a vector basis $S$-cordial labeling is called a vector basis $S$-cordial graph . In this paper, we prove that the graphs $L_{n}\odot mK_{1}$ and $T(P_{n})\odot mK_{1}$ are the vector basis $\{(1,1,1,1), (1,1,1,0), (1,1,0,0), (1,0,0,0)\}$-cordial.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 1

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button